Sum α β
, or α ⊕ β
, is the disjoint union of types α
and β
.
An element of α ⊕ β
is either of the form .inl a
where a : α
,
or .inr b
where b : β
.
Constructors
inl.{u, v} {α : Type u} {β : Type v} (val : α) : α ⊕ β
Left injection into the sum type α ⊕ β
. If a : α
then .inl a : α ⊕ β
.
inr.{u, v} {α : Type u} {β : Type v} (val : β) : α ⊕ β
Right injection into the sum type α ⊕ β
. If b : β
then .inr b : α ⊕ β
.